Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103.551
Filtrar
1.
J Nanobiotechnology ; 22(1): 165, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600567

RESUMO

As a common musculoskeletal disorder, frozen shoulder is characterized by thickened joint capsule and limited range of motion, affecting 2-5% of the general population and more than 20% of patients with diabetes mellitus. Pathologically, joint capsule fibrosis resulting from fibroblast activation is the key event. The activated fibroblasts are proliferative and contractive, producing excessive collagen. Albeit high prevalence, effective anti-fibrosis modalities, especially fibroblast-targeting therapies, are still lacking. In this study, microRNA-122 was first identified from sequencing data as a potential therapeutic agent to antagonize fibroblast activation. Then, Agomir-122, an analog of microRNA-122, was loaded into poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Agomir-122@NP), a carrier with excellent biocompatibility for the agent delivery. Moreover, relying on the homologous targeting effect, we coated Agomir-122@NP with the cell membrane derived from activated fibroblasts (Agomir-122@MNP), with an attempt to inhibit the proliferation, contraction, and collagen production of abnormally activated fibroblasts. After confirming the targeting effect of Agomir-122@MNP on activated fibroblasts in vitro, we proved that Agomir-122@MNP effectively curtailed fibroblasts activation, ameliorated joint capsule fibrosis, and restored range of motion in mouse models both prophylactically and therapeutically. Overall, an effective targeted delivery method was developed with promising translational value against frozen shoulder.


Assuntos
Bursite , MicroRNAs , Nanopartículas , Camundongos , Animais , Humanos , Fibroblastos/metabolismo , Bursite/tratamento farmacológico , Bursite/metabolismo , Membrana Celular , Fibrose , Colágeno/metabolismo , MicroRNAs/metabolismo
2.
Nanoscale ; 16(16): 7965-7975, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38567436

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that mostly affects joints. Although RA therapy has made significant progress, difficulties including extensive medication metabolism and its quick clearance result in its inadequate bioavailability. The anti-inflammatory effect of zein was reported with other medications, but it has certain limitations. There are reports on the anti-oxidant and anti-inflammatory effect of aescin, which exhibits low bioavailability for the treatment of rheumatoid arthritis. Also, the combinatorial effect of zein with other effective drug delivery systems is still under investigation for the treatment of experimental collagen-induced rheumatoid arthritis. The focus of this study was to formulate and define the characteristics of zein-coated gelatin nanoparticles encapsulated with aescin (Ze@Aes-GNPs) and to assess and contrast the therapeutic effectiveness of Ze@Aes-GNPs towards collagen-induced RA in Wistar rats. Nanoprecipitation and the layer-by-layer coating process were used to fabricate Ze@Aes-GNPs and their hydrodynamic diameter was determined to be 182 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to further validate the size, shape, and surface morphology of Ze@Aes-GNPs. When tested against foreskin fibroblasts (BJ), these nanoparticles demonstrated significantly high cytocompatibility. Both Aes and Ze@Aes-GNPs were effective in treating arthritis, as shown by the decreased edoema, erythema, and swelling of the joints, between which Ze@Aes-GNPs were more effective. Further, it was demonstrated that Aes and Ze@Aes-GNPs reduced the levels of oxidative stress (articular elastase, lipid peroxidation, catalase, superoxide dismutase and nitric oxide) and inflammatory indicators (TNF-α, IL-1ß and myeloperoxidase). The histopathology findings further demonstrated that Ze@Aes-GNPs considerably reduced the infiltration of inflammatory cells at the ankle joint cartilage compared to Aes. Additionally, immunohistochemistry examination showed that treatment with Ze@Aes-GNPs suppressed the expression of pro-inflammatory markers (COX-2 and IL-6) while increasing the expression of SOD1. In summary, the experiments indicated that Aes and Ze@Aes-GNPs lowered the severity of arthritis, and critically, Ze@Aes-GNPs showed better effectiveness in comparison to Aes. This suppression of oxidative stress and inflammation was likely driven by Aes and Ze@Aes-GNPs.


Assuntos
Artrite Experimental , Escina , Gelatina , Nanopartículas , Ratos Wistar , Zeína , Animais , Gelatina/química , Zeína/química , Ratos , Nanopartículas/química , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Escina/química , Escina/farmacologia , Masculino , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Artrite Reumatoide/metabolismo , Humanos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Colágeno/química
3.
Sci Rep ; 14(1): 9495, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664570

RESUMO

The biological mechanisms regulating tenocyte differentiation and morphological maturation have not been well-established, partly due to the lack of reliable in vitro systems that produce highly aligned collagenous tissues. In this study, we developed a scaffold-free, three-dimensional (3D) tendon culture system using mouse tendon cells in a differentially adherent growth channel. Transforming Growth Factor-ß (TGFß) signaling is involved in various biological processes in the tendon, regulating tendon cell fate, recruitment and maintenance of tenocytes, and matrix organization. This known function of TGFß signaling in tendon prompted us to utilize TGFß1 to induce tendon-like structures in 3D tendon constructs. TGFß1 treatment promoted a tendon-like structure in the peripheral layer of the constructs characterized by increased thickness with a gradual decrease in cell density and highly aligned collagen matrix. TGFß1 also enhanced cell proliferation, matrix production, and morphological maturation of cells in the peripheral layer compared to vehicle treatment. TGFß1 treatment also induced early tenogenic differentiation and resulted in sufficient mechanical integrity, allowing biomechanical testing. The current study suggests that this scaffold-free 3D tendon cell culture system could be an in vitro platform to investigate underlying biological mechanisms that regulate tenogenic cell differentiation and matrix organization.


Assuntos
Diferenciação Celular , Proliferação de Células , Tendões , Tenócitos , Fator de Crescimento Transformador beta1 , Animais , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Tendões/citologia , Tendões/metabolismo , Camundongos , Diferenciação Celular/efeitos dos fármacos , Tenócitos/metabolismo , Tenócitos/citologia , Proliferação de Células/efeitos dos fármacos , Técnicas de Cultura de Células em Três Dimensões/métodos , Células Cultivadas , Técnicas de Cultura de Células/métodos , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Engenharia Tecidual/métodos
4.
Adv Rheumatol ; 64(1): 32, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664779

RESUMO

Hereditary connective tissue disorders include more than 200 conditions affecting different organs and tissues, compromising the biological role of the extracellular matrix through interference in the synthesis, development, or secretion of collagen and/or its associated proteins. The clinical phenotype includes multiple signs and symptoms, usually nonspecific but of interest to rheumatologists because of musculoskeletal involvement. The patient´s journey to diagnosis is long, and physicians should include these disorders in their differential diagnoses of diseases with systemic involvement. In this review, insights for the diagnosis and treatment of osteogenesis imperfecta, hypermobility spectrum disorder/Ehlers-Danlos syndrome, Marfan, Loeys-Dietz, and Stickler syndromes are presented.


Assuntos
Artrite , Doenças do Tecido Conjuntivo , Síndrome de Ehlers-Danlos , Perda Auditiva Neurossensorial , Síndrome de Loeys-Dietz , Síndrome de Marfan , Osteogênese Imperfeita , Descolamento Retiniano , Humanos , Osteogênese Imperfeita/genética , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/diagnóstico , Doenças do Tecido Conjuntivo/genética , Doenças do Tecido Conjuntivo/terapia , Síndrome de Loeys-Dietz/genética , Síndrome de Loeys-Dietz/diagnóstico , Síndrome de Marfan/genética , Síndrome de Marfan/diagnóstico , Colágeno/genética , Instabilidade Articular/genética
5.
Sci Rep ; 14(1): 9012, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641671

RESUMO

To better understand molecular aspects of equine endometrial function, there is a need for advanced in vitro culture systems that more closely imitate the intricate 3-dimensional (3D) in vivo endometrial structure than current techniques. However, development of a 3D in vitro model of this complex tissue is challenging. This study aimed to develop an in vitro 3D endometrial tissue (3D-ET) with an epithelial cell phenotype optimized by treatment with a Rho-associated protein kinase (ROCK) inhibitor. Equine endometrial epithelial (eECs) and mesenchymal stromal (eMSCs) cells were isolated separately, and eECs cultured in various concentrations of Rock inhibitor (0, 5, 10 µmol) in epithelial medium (EC-medium) containing 10% knock-out serum replacement (KSR). The optimal concentration of Rock inhibitor for enhancing eEC proliferation and viability was 10 µM. However, 10 µM Rock inhibitor in the 10% KSR EC-medium was able to maintain mucin1 (Muc1) gene expression for only a short period. In contrast, fetal bovine serum (FBS) was able to maintain Muc1 gene expression for longer culture durations. An in vitro 3D-ET was successfully constructed using a collagen-based scaffold to support the eECs and eMSCs. The 3D-ET closely mimicked in vivo endometrium by displaying gland-like eEC-derived structures positive for the endometrial gland marker, Fork headbox A2 (FOXA2), and by mimicking the 3D morphology of the stromal compartment. In addition, the 3D-ET expressed the secretory protein MUC1 on its glandular epithelial surface and responded to LPS challenge by upregulating the expression of the interleukin-6 (IL6) and prostaglandin F synthase (PGFS) genes (P < 0.01), along with an increase in their secretory products, IL-6 (P < 0.01) and prostaglandin F2alpha (PGF2α) (P < 0.001) respectively. In the future, this culture system can be used to study both normal physiology and pathological processes of the equine endometrium.


Assuntos
Engenharia Tecidual , Quinases Associadas a rho , Feminino , Animais , Cavalos , Células Cultivadas , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Endométrio/metabolismo , Células Epiteliais/metabolismo , Colágeno/metabolismo , Dinoprosta/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(16): e2321002121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593072

RESUMO

Bacterial collagenases are important virulence factors, secreted by several pathogenic Clostridium, Bacillus, Spirochaetes, and Vibrio species. Yet, the mechanism by which these enzymes cleave collagen is not well understood. Based on biochemical and mutational studies we reveal that collagenase G (ColG) from Hathewaya histolytica recognizes and processes collagen substrates differently depending on their nature (fibrillar vs. soluble collagen); distinct dynamic interactions between the activator and peptidase domain are required based on the substrate type. Using biochemical and circular dichroism studies, we identify the presumed noncatalytic activator domain as the single-domain triple helicase that unwinds collagen locally, transiently, and reversibly.


Assuntos
Colágeno , Colagenases , Colágeno/química , Clostridium histolyticum , Clostridium
7.
J Dent Res ; 103(5): 555-564, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594786

RESUMO

The temporomandibular joint (TMJ) disc is mainly composed of collagen, with its arrangement responding to efficient stress distribution. However, microstructural and micromechanical transformations of the TMJ disc under resting, functional, and pathological conditions remain unclear. To address this, our study presents a high-resolution microstructural and mechanical atlas of the porcine TMJ disc. First, the naive microstructure and mechanical properties were investigated in porcine TMJ discs (resting and functional conditions). Subsequently, the perforation and tear models (pathological conditions) were compared. Following this, a rabbit model of anterior disc displacement (abnormal stress) was studied. Results show diverse microstructures and mechanical properties at the nanometer to micrometer scale. In the functional state, gradual unfolding of the crimping cycle in secondary and tertiary structures leads to D-cycle prolongation in the primary structure, causing tissue failure. Pathological conditions lead to stress concentration near the injury site due to collagen interfibrillar traffic patterns, resulting in earlier damage manifestation. Additionally, the abnormal stress model shows collagen damage initiating at the primary structure and extending to the superstructure over time. These findings highlight collagen's various roles in different pathophysiological states. Our study offers valuable insights into TMJ disc function and dysfunction, aiding the development of diagnostic and therapeutic strategies for TMJ disorders, as well as providing guidance for the design of structural biomimetic materials.


Assuntos
Disco da Articulação Temporomandibular , Animais , Disco da Articulação Temporomandibular/fisiopatologia , Coelhos , Suínos , Fenômenos Biomecânicos , Colágeno , Estresse Mecânico , Modelos Animais de Doenças , Transtornos da Articulação Temporomandibular/fisiopatologia , Transtornos da Articulação Temporomandibular/patologia
8.
Cell Mol Life Sci ; 81(1): 187, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635081

RESUMO

Idiopathic pulmonary fibrosis (IPF) poses significant challenges due to limited treatment options despite its complex pathogenesis involving cellular and molecular mechanisms. This study investigated the role of transient receptor potential ankyrin 1 (TRPA1) channels in regulating M2 macrophage polarization in IPF progression, potentially offering novel therapeutic targets. Using a bleomycin-induced pulmonary fibrosis model in C57BL/6J mice, we assessed the therapeutic potential of the TRPA1 inhibitor HC-030031. TRPA1 upregulation was observed in fibrotic lungs, correlating with worsened lung function and reduced survival. TRPA1 inhibition mitigated fibrosis severity, evidenced by decreased collagen deposition and restored lung tissue stiffness. Furthermore, TRPA1 blockade reversed aberrant M2 macrophage polarization induced by bleomycin, associated with reduced Smad2 phosphorylation in the TGF-ß1-Smad2 pathway. In vitro studies with THP-1 cells treated with bleomycin and HC-030031 corroborated these findings, highlighting TRPA1's involvement in fibrotic modulation and macrophage polarization control. Overall, targeting TRPA1 channels presents promising therapeutic potential in managing pulmonary fibrosis by reducing pro-fibrotic marker expression, inhibiting M2 macrophage polarization, and diminishing collagen deposition. This study sheds light on a novel avenue for therapeutic intervention in IPF, addressing a critical need in the management of this challenging disease.


Assuntos
Fibrose Pulmonar Idiopática , Macrófagos , Canal de Cátion TRPA1 , Animais , Camundongos , Acetanilidas , Bleomicina , Colágeno , Proteínas do Citoesqueleto , Camundongos Endogâmicos C57BL , Purinas , Canal de Cátion TRPA1/metabolismo
9.
Mol Med ; 30(1): 52, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641575

RESUMO

BACKGROUND: Skin fibrosis affects the normal function of the skin. TGF-ß1 is a key cytokine that affects organ fibrosis. The latency-associated peptide (LAP) is essential for TGF-ß1 activation. We previously constructed and prepared truncated LAP (tLAP), and confirmed that tLAP inhibited liver fibrosis by affecting TGF-ß1. SPACE peptide has both transdermal and transmembrane functions. SPACE promotes the delivery of macromolecules through the stratum corneum into the dermis. This study aimed to alleviate skin fibrosis through the delivery of tLAP by SPACE. METHODS: The SPACE-tLAP (SE-tLAP) recombinant plasmid was constructed. SE-tLAP was purified by nickel affinity chromatography. The effects of SE-tLAP on the proliferation, migration, and expression of fibrosis-related and inflammatory factors were evaluated in TGF-ß1-induced NIH-3T3 cells. F127-SE-tLAP hydrogel was constructed by using F127 as a carrier to load SE-tLAP polypeptide. The degradation, drug release, and biocompatibility of F127-SE-tLAP were evaluated. Bleomycin was used to induce skin fibrosis in mice. HE, Masson, and immunohistochemistry were used to observe the skin histological characteristics. RESULTS: SE-tLAP inhibited the proliferation, migration, and expression of fibrosis-related and inflammatory factors in NIH-3T3 cells. F127-SE-tLAP significantly reduced ECM production, collagen deposition, and fibrotic pathological changes, thereby alleviating skin fibrosis. CONCLUSION: F127-SE-tLAP could increase the transdermal delivery of LAP, reduce the production and deposition of ECM, inhibit the formation of dermal collagen fibers, and alleviate the progression of skin fibrosis. It may provide a new idea for the therapy of skin fibrosis.


Assuntos
Polietilenos , Polipropilenos , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta , Camundongos , Animais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Bleomicina , Hidrogéis , Transdução de Sinais , Fibrose , Colágeno/metabolismo
10.
Nat Commun ; 15(1): 3302, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658535

RESUMO

Uncontrolled secretion of ECM proteins, such as collagen, can lead to excessive scarring and fibrosis and compromise tissue function. Despite the widespread occurrence of fibrotic diseases and scarring, effective therapies are lacking. A promising approach would be to limit the amount of collagen released from hyperactive fibroblasts. We have designed membrane permeant peptide inhibitors that specifically target the primary interface between TANGO1 and cTAGE5, an interaction that is required for collagen export from endoplasmic reticulum exit sites (ERES). Application of the peptide inhibitors leads to reduced TANGO1 and cTAGE5 protein levels and a corresponding inhibition in the secretion of several ECM components, including collagens. Peptide inhibitor treatment in zebrafish results in altered tissue architecture and reduced granulation tissue formation during cutaneous wound healing. The inhibitors reduce secretion of several ECM proteins, including collagens, fibrillin and fibronectin in human dermal fibroblasts and in cells obtained from patients with a generalized fibrotic disease (scleroderma). Taken together, targeted interference of the TANGO1-cTAGE5 binding interface could enable therapeutic modulation of ERES function in ECM hypersecretion, during wound healing and fibrotic processes.


Assuntos
Cicatriz , Colágeno , Fibroblastos , Cicatrização , Peixe-Zebra , Humanos , Animais , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Colágeno/metabolismo , Cicatrização/efeitos dos fármacos , Cicatriz/metabolismo , Cicatriz/patologia , Cicatriz/tratamento farmacológico , Pele/metabolismo , Pele/patologia , Pele/efeitos dos fármacos , Fibrose , Peptídeos/farmacologia , Peptídeos/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos
11.
Sci Rep ; 14(1): 9070, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643262

RESUMO

Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite and TNF-α is proinflammatory cytokine, both known to be associated with renal inflammation, fibrosis and chronic kidney disease. However, today there are no data showing the combined effect of TMAO and TNF-α on renal fibrosis-and inflammation. The aim of this study was to investigate whether TMAO can enhance the inflammatory and fibrotic effects of TNF-α on renal fibroblasts. We found that the combination of TNF-α and TMAO synergistically increased fibronectin release and total collagen production from renal fibroblasts. The combination of TMAO and TNF-α also promoted increased cell proliferation. Both renal proliferation and collagen production were mediated through Akt/mTOR/ERK signaling. We also found that TMAO enhanced TNF-α mediated renal inflammation by inducing the release of several cytokines (IL-6, LAP TGF-beta-1), chemokines (CXCL-6, MCP-3), inflammatory-and growth mediators (VEGFA, CD40, HGF) from renal fibroblasts. In conclusion, we showed that TMAO can enhance TNF-α mediated renal fibrosis and release of inflammatory mediators from renal fibroblasts in vitro. Our results can promote further research evaluating the combined effect of TMAO and inflammatory mediators on the development of kidney disease.


Assuntos
Metilaminas , Insuficiência Renal Crônica , Fator de Necrose Tumoral alfa , Humanos , Mediadores da Inflamação , Fibrose , Insuficiência Renal Crônica/metabolismo , Citocinas , Fibroblastos/metabolismo , Inflamação/metabolismo , Colágeno
12.
Cells ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667274

RESUMO

Skin ageing is defined, in part, by collagen depletion and fragmentation that leads to a loss of mechanical tension. This is currently believed to reflect, in part, the accumulation of senescent cells. We compared the expression of genes and proteins for components of the extracellular matrix (ECM) as well as their regulators and found that in vitro senescent cells produced more matrix metalloproteinases (MMPs) than proliferating cells from adult and neonatal donors. This was consistent with previous reports of senescent cells contributing to increased matrix degradation with age; however, cells from adult donors proved significantly less capable of producing new collagen than neonatal or senescent cells, and they showed significantly lower myofibroblast activation as determined by the marker α-SMA. Functionally, adult cells also showed slower migration than neonatal cells. We concluded that the increased collagen degradation of aged fibroblasts might reflect senescence, the reduced collagen production likely reflects senescence-independent processes.


Assuntos
Senescência Celular , Colágeno , Fibroblastos , Pele , Humanos , Fibroblastos/metabolismo , Pele/metabolismo , Pele/citologia , Adulto , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Recém-Nascido , Envelhecimento/metabolismo , Proliferação de Células , Metaloproteinases da Matriz/metabolismo , Movimento Celular , Células Cultivadas , Pessoa de Meia-Idade
13.
Mar Drugs ; 22(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38667776

RESUMO

Aging is closely associated with collagen degradation, impacting the structure and strength of the muscles, joints, bones, and skin. The continuous aging of the skin is a natural process that is influenced by extrinsic factors such as UV exposure, dietary patterns, smoking habits, and cosmetic supplements. Supplements that contain collagen can act as remedies that help restore vitality and youth to the skin, helping combat aging. Notably, collagen supplements enriched with essential amino acids such as proline and glycine, along with marine fish collagen, have become popular for their safety and effectiveness in mitigating the aging process. To compile the relevant literature on the anti-aging applications of marine collagen, a search and analysis of peer-reviewed papers was conducted using PubMed, Cochrane Library, Web of Science, and Embase, covering publications from 1991 to 2024. From in vitro to in vivo experiments, the reviewed studies elucidate the anti-aging benefits of marine collagen, emphasizing its role in combating skin aging by minimizing oxidative stress, photodamage, and the appearance of wrinkles. Various bioactive marine peptides exhibit diverse anti-aging properties, including free radical scavenging, apoptosis inhibition, lifespan extension in various organisms, and protective effects in aging humans. Furthermore, the topical application of hyaluronic acid is discussed as a mechanism to increase collagen production and skin moisture, contributing to the anti-aging effects of collagen supplementation. The integration of bio-tissue engineering in marine collagen applications is also explored, highlighting its proven utility in skin healing and bone regeneration applications. However, limitations to the scope of its application exist. Thus, by delving into these nuanced considerations, this review contributes to a comprehensive understanding of the potential and challenges associated with marine collagen in the realm of anti-aging applications.


Assuntos
Organismos Aquáticos , Colágeno , Envelhecimento da Pele , Envelhecimento da Pele/efeitos dos fármacos , Humanos , Animais , Colágeno/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo
14.
Mar Drugs ; 22(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38667780

RESUMO

Approximately 75,000 tons of different sea urchin species are globally harvested for their edible gonads. Applying a circular economy approach, we have recently demonstrated that non-edible parts of the Mediterranean Sea urchin Paracentrotus lividus can be fully valorized into high-value products: antioxidant pigments (polyhydroxynaphthoquinones-PHNQs) and fibrillar collagen can be extracted to produce innovative biomaterials for biomedical applications. Can waste from other edible sea urchin species (e.g., Sphaerechinus granularis) be similarly valorised? A comparative study on PHNQs and collagen extraction was conducted. PHNQ extraction yields were compared, pigments were quantified and identified, and antioxidant activities were assessed (by ABTS assay) and correlated to specific PHNQ presence (i.e., spinochrome E). Similarly, collagen extraction yields were evaluated, and the resulting collagen-based biomaterials were compared in terms of their ultrastructure, degradation kinetics, and resistance to compression. Results showed a partially similar PHNQ profile in both species, with significantly higher yield in P. lividus, while S. granularis exhibited better antioxidant activity. P. lividus samples showed higher collagen extraction yield, but S. granularis scaffolds showed higher stability. In conclusion, waste from different species can be successfully valorised through PHNQ and collagen extraction, offering diverse applications in the biomedical field, according to specific technical requirements.


Assuntos
Antioxidantes , Colágeno , Paracentrotus , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Colágeno/química , Paracentrotus/química , Naftoquinonas/química , Naftoquinonas/isolamento & purificação , Ouriços-do-Mar/química , Resíduos , Materiais Biocompatíveis/química , 60659
16.
Arch Oral Biol ; 162: 105962, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569446

RESUMO

OBJECTIVE: This study assessed the impact of an anti-sclerostin monoclonal antibody (Scl-Ab)-based osteoporosis drug on the post-extraction alveolar repair of ovariectomized rats. DESIGN: Fifteen female rats were randomly distributed into three groups: CTR (healthy animals), OST (osteoporosis induced by ovariectomy), and OST+Scl-Ab (osteoporosis induction followed by Scl-Ab treatment). Ovariectomy or sham surgery was performed 30 days before baseline, and Scl-Ab or a vehicle was administered accordingly in the groups. After seven days, all rats underwent the first lower molar extraction and were euthanized 15 days later. Computed microtomography, histological analysis, and collagen content measurement were performed on post-extraction sockets and intact mandibular and maxillary bone areas. RESULTS: Microtomographic analyses of the sockets and mandibles did not reveal significant differences between groups on bone morphometric parameters (p > 0.05), while maxillary bone analyses resulted in better maintenance of bone architecture in OST+Scl-Ab, compared to OST (p < 0.05). Descriptive histological analysis and polarization microscopy indicated better post-extraction socket repair characteristics and collagen content in OST+Scl-Ab compared to OST (p < 0.05). CONCLUSIONS: Scl-Ab-based medication did not accelerate alveolar bone formation but exhibited better post-extraction repair characteristics, and collagen content compared to ovariectomized animals only.


Assuntos
Proteínas Morfogenéticas Ósseas , Osteoporose , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Marcadores Genéticos , Anticorpos Monoclonais/farmacologia , Colágeno
17.
Zhongguo Zhong Yao Za Zhi ; 49(3): 789-797, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621883

RESUMO

This study aims to investigate the effect and mechanism of Fuyu Decoction(FYD) in the treatment of myocardial fibrosis in the rat model of heart failure(HF). Sixty Wistar rats were randomized into a modeling group(n=50) and a sham group(n=10). A post-myocardial infarction HF model was established by ligating the left anterior descending coronary artery in rats. The successfully modeled rats were assigned into model, low-dose(2.5 g·kg~(-1)) FYD(FYD-L), high-dose(5.0 g·kg~(-1)) FYD(FYD-H), and FYD+Nrf2 inhibitor(ML385, 30 mg·kg~(-1)) groups(n=10). FYD was administrated by gavage and ML385 by intraperitoneal injection. The rats in the sham and model groups were administrated with equal amounts of normal saline by gavage. After 8 weeks of intervention, the cardiac function indicators were measured, and the myocardial tissue morphology and collagen deposition were observed. The positive expression of collagens Ⅰ and Ⅲ, apoptosis, and oxidative stress were examined, and the levels of Fe~(2+) and reactive oxygen species(ROS) were determined. The protein levels of nuclear factor erythroid 2-related factor 2(Nrf2), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), and acyl-coenzyme A synthase long chain family member 4(ACSL4) in the myocardial tissue were determined. Compared with sham group, the model group showed decreased left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), increased left ventricular end internal dimension in systole(LVIDs), left ventricular internal diameter in diastole(LVIDd), and myocardial collagen deposition, positive expression of collagens Ⅰ and Ⅲ, elevated apoptosis rate and malondialdehyde(MDA), Fe~(2+), and ROS levels, lowered superoxide dismutase(SOD) and glutathione peroxidase(GSH) levels, down-regulated protein levels of Nrf2, SLC7A11, and GPX4, and up-regulated protein level of ACSL4. Compared with the model group, the above indicators were restored by FYD. Moreover, ML385 reversed the protective effect of FYD on myocardial fibrosis in HF rats. In conclusion, FYD can inhibit ferroptosis by activating the Nrf2/GPX4 pathway, thereby ameliorating myocardial fibrosis in HF rats.


Assuntos
Ferroptose , Insuficiência Cardíaca , Ratos , Animais , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Volume Sistólico , Espécies Reativas de Oxigênio , Função Ventricular Esquerda , Ratos Wistar , Insuficiência Cardíaca/tratamento farmacológico , Fibrose , Colágeno/farmacologia
18.
Biochemistry (Mosc) ; 89(2): 269-278, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622095

RESUMO

Over the past decades, an unimaginably large number of attempts have been made to restore the structure of mammalian organs after injury by introducing stem cells into them. However, this procedure does not lead to full recovery. At the same time, it is known that complete regeneration (restitution without fibrosis) is possible in organs with proliferating parenchymal cells. An analysis of such models allows to conclude that the most important condition for the repair of histological structures of an organ (in the presence of stem cells) is preservation of the collagen frame structures in it, which serve as "guide rails" for proliferating and differentiating cells. An alternative condition for complete reconstruction of organ structures is the presence of a free "morphogenetic space" containing a gel-like matrix of the embryonic-type connective tissue, which exists during embryonal development of organs in mammals or during complete regeneration in amphibians. Approaches aimed at preserving frame structures or creating a "morphogenetic space" could radically improve the results of organ regeneration using both local and exogenous stem cells.


Assuntos
Regeneração , Células-Tronco , Animais , Desenvolvimento Embrionário , Colágeno , Mamíferos
19.
Methods Mol Biol ; 2782: 97-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622395

RESUMO

Simple and reproducible 3D cell culture systems that mimic biological interactions within physiological tissues (biomimetics) can provide unique insight for scientific inquiries compared to 2D cell cultures. Fibroblast-populated collagen lattices (FPCLs) are commonly used for mimicking physiological collagen matrices, potentiating biomechanical stresses on embedded fibroblasts. Here, we describe a novel 3D co-culture model that incorporates human Tenon's capsule fibroblasts embedded in FPCLs co-cultured with THP-1 monocytes suspended in culture media. This method can be used for the assessment of cell-cell interactions in various stages of the wound healing process and can facilitate various types of immune cells in co-culture. This system can also be used to study pharmacological agents that may eventually improve clinical outcomes in patients affected by inflammatory disorders.


Assuntos
Monócitos , Miofibroblastos , Humanos , Miofibroblastos/metabolismo , Técnicas de Cocultura , Monócitos/metabolismo , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/metabolismo
20.
J Mech Behav Biomed Mater ; 154: 106498, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581962

RESUMO

Chitosan (CS) and phloroglucinol (PhG), two extracts abundantly found in marine life, were investigated for their ability to biomodify demineralized dentin by enhancing collagen crosslinks and improving dentin extracellular matrix (ECM) mechanical and biochemical stability. Dentin obtained from non-carious extracted human molars were demineralized with phosphoric acid. Baseline Fourier-transform infrared (FTIR) spectra, apparent flexural elastic modulus (AE) and dry mass (DM) of each specimen were independently acquired. Specimens were randomly incubated for 5 min into either ultrapure water (no-treatment), 1% glutaraldehyde (GA), 1% CS or 1% PhG. Water and GA were used, respectively, as a negative and positive control for collagen crosslinks. Specimens' post-treatment FTIR spectra, AE, and DM were obtained and compared with correspondent baseline measurements. Additionally, the host-derived proteolytic activity of dentin ECM was assessed using hydroxyproline assay (HYP) and spectrofluorometric analysis of a fluorescent-quenched substrate specific for matrix metalloproteinases (MMPs). Finally, the bond strength of an etch-and-rinse adhesive was evaluated after application of marine compounds as non-rinsing dentin primers. Dentin specimens FTIR spectral profile changed remarkably, and their AE increased significantly after treatment with marine compounds. DM variation, HYP assay and fluorogenic substrate analysis concurrently indicated the biodegradation of CS- and PhG-treated specimens was significantly lesser in comparison with untreated specimens. CS and PhG treatments enhanced biomechanical/biochemical stability of demineralized dentin. These novel results show that PhG is a primer with the capacity to biomodify demineralized dentin, hence rendering it less susceptible to biodegradation by host-proteases.


Assuntos
Quitosana , Colagem Dentária , Humanos , Dentina/química , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Hidroxiprolina , Adesivos Dentinários/química , Água/metabolismo , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...